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Stability of neuronal pulses composed of concatenated unstable kinks
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We demonstrate that a traveling pulse solution, emerging from the concatenation of two unstableskinks,
be stable. By means of stability analysis and numerical simulations, we show the stability of neuronal pulses
(action potentialswith increasing refractory periods, which decompose into tradiationally unstable kinks
in the limit. These action potentials are solutions of an ultrarefractory version of the FitzHugh-Nagumo system.
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Pulses which bifurcate from the concatenation of a frontrefractory FitzHugh-Nagumo system, we show that a stable
kink and a back kink(with the same speed and directjon pulse emerges from linking together two kinks with unstable
arise in a variety of physical systems. A model of CO oxi-continuous spectrum. Independently, Sandstede and Scheel
dation on a platinunjPt(110)] surface yields such solitary [8] analytically showed, in this setting, the possibility of no
pulses near the onset of spatiotemporal childs Sneyd unstable eigenvalues being created.
et al.[2] found that their model of traveling calcium (€3 Before analyzing the stability of the solutions of the ultra-
waves in pancreatic acinar cells is also of this type. A modetefractory FitzHugh-Nagumo system, we first briefly discuss
locked laser with a multiple quantum well saturable absorbefhe known dynamics of the FitzHugh-Nagumo equations
produces traveling flat-top pulses formed by linking togethehich will be relevant in our analysi®]. The model formu-

a front and back3]. In a neuronal system, an action potential lated independently by FitzHugf0] and Nagumoet al.

(or electrical pulsgheld in a refractory, quiescent phase can[11] qualitatively describes the spatial propagation of an ac-
be viewed as a conjoining of a generalized fréintluding  tion potential along a nerve axon. The system is

the activation, excited and inactivation phases of the action
potentia) and a generalized badkonsisting only of the fi-
nal, recovery phase @

Since it is believed that neuronal systems communicate W= e(u—yw),
through action potentials‘,‘ numer(gus studies have been COWhere e<1, y<1, and f(u)=u(u—a)(1—u), for some
duct_ed to analyze and. decode n_euronal signds. In_ ae (0,0.5). The fast, one-dimensiondlD) excitatory vari-
particular, Berry and Meistg] experimentally ano_l analyti- . able u mimics the neuron’s membrane potential. The slow,
cally found that extended, neuronal refractory periods may Ir?nhibitory variablew captures the channel gating kinetics

fact enhance neural precision. Herein, we consider a mOd‘auantitatively described by the Hodgkin-Huxley mofte2].
which effectively captures the dynamics of a neuronal sys- By introducing the moving framé=x—ct, wherec is

tri?a??ovrl)r/]gﬁ?zllgEghe}rl\]lig\jljrrrz%blseyéiﬁcé?(%l:?ites“g(rj\. ;Cﬁﬁ)xlg?:the speed of the wave, the traveling wave solutions of(Eq.
tential with a long (refractory quiescent phase. If the satisfy the ordinary differential equatiot®DES:

U= Uy + F(U)—w,

refractory latent phase is prolonged indefinitely, the action u'=v,
potential with a widening quiescent phase will decompose in
the limit into two (generalizedikinks, as shown in Fig. 1. v =—cvo—f(u)+w, )

The issue of interest is th&tability of these pulse solu-
tions with elongating intermediargquiescent states,in re- €
lation to the stability of their limiting behavior: two coexist- w=— E(u— YW),
ing kinks. It is known that pulse solutions bifurcating from
two stablekinks may be either stable or unstalptlepending where ' =
on the first derivative of the Evans’ functiph6]. A more
intriguing question of recent interest is: Will the concatena-
tion of two unstablekinks necessarilyproduce arunstable
pulse? Nii[7], and Sandstede and Sch&@] independently
showed a case where such pulses experience a particularly
severe instability. A cascade of unstable bound states accu- _
mulates, as the latent state between the front and back in- o) )
creases. On the other hand, Zimmerneral [1] obtained |} | |'" ______
numerical results suggesting that the pulses may be stable
even though the kinks are unstable. FIG. 1. () An action potential with a prolonged refractory, qui-
In this article, we show that the seemingly paradoxicalescent phase can be viewed as a concatenatidn af generalized
scenario of astable pulse bifurcating from twounstable front and(c) a generalized back. The rest state is denoted by a
kinks can, and indeed does, occur. By studying the ultradashed line.

d/d¢. In the traveling wave phase space given by
Eq. (2), at a particular speed] there exists a homoclinic orbit
based at the origifil3]. The homoclinicH, corresponds to
the traveling pulse solution of E¢l). Figure Za) shows the
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FIG. 2. The 2D traveling pulse solution of the FitzHugh- ~ FIG. 3. The vertex of each parabola is located ate=0.1 and
Nagumo equations, for ©e<1, is depicted twice(a) As the w=B=0.01p. The critical points occur whenever the quadratic
homoclinic orbitH, in the 3D traveling wave phase space, where nullclines (for varying values ofp) cross the cubic nullclin€.
the thin solid lines correspond to the nullclines on{be=0} plane.

(b) As functions of¢. The pulse solution has two components: an v'=—cv+w-—"f(u), (4)

excitatory(u) and an inhibitory ). The double arrows itga) in-

dicate “fast” dynamics, and the single arrows, “slow.” €

w'=——[(w—0.01p)2+0.00Ip*(u—0.1)].

two distinct scales of the system: sldias H, passes near ¢

g—{(u,o,w).w—f(u)}, along 't$ right then Ieft-.hand As depicted in Fig. 3, on thév =0} plane, the inhibitory
ranches and fast (as the orbit shoots across in the licli th itat liclin at (0.0.0 d

u-direction, between the left and right-hand brancheg)of nulicline crosses he excitatory hulichne a ( T ) an.

The two scales are equivalently manifested in the fast an§U(P).0W(p)). As p decreases, the latter critical point

slow amplitude changes of the waves in Figh)2The action ~Moves down along the left-hand branchfcloser to the

potentialu(&) has quick activation and inactivation phases,homoclinic orbitH, . See Fig. 4.

but a slow excited phase and a slow return to rest. Because of Let p* be the value at which

the singular nature of Eq(l), it is possible to show the R R

existence of a unique homoclinic orbi,, and to determine Uu(p*),0w(p*))=(u*,0w*)

the stability of the pulse solution correspondingHg [6].

The ultra-refractory FitzHugh-Nagumo system has thds a point contained on the homoclinic orbit corresponding to
same, fast excitatory behavior @3, but with different slow, the pulse solution of Eq3). Since (i*,0w*) is a critical

inhibitory dynamics: point, the homoclinic orbiH, is now actually a heteroclinic
loop (or cycle. One heteroclinic orbitfrom (0,0,0) to
U;= Uy, +F(U)—w, (u*,0w*)] corresponds to a generalized front solution of
(3) Eq. (3), while the other, “shorter” heteroclinic orbitfrom
W= e[ a(Ww— B)%+ B%(u—a)], (u*,0w*) back to (0,0,0) corresponds to a slow, general-

ized back solution. For any smal] there exists a bifurcation
wherea=0.1, 8=0.01p, andf(u) is as before. The bifur- value p*(€). When p>p*(€), (4) has a homoclinic orbit
cation parametep controls the opening of the parabola, ascorresponding to an action potential 3); but when p
seen in Fig. 3. Such a system might result from the reduction
of a conductance-based neuron mofdet] which incorpo- w
rates various Ca currents[15], in addition to the sodium
(Na") and potassium (K) currents included in the H
Hodgkin-Huxley model. The parametershould modulate
according to the membranous currents considered. The effect
of modulatingp is to vary the length of the refractory period
of the action potential. The longer the relative refractory u
phase of a neuron, the harder it is for the neuron to fire again; )/
the longer the absolute refractory period of a neuron, the \
more time before a neuron may fire at [@lb].

Settingé=x—ct, the traveling wave solutions of E¢3) FIG. 4. The homoclinic orbiHH, corresponds to the pulse solu-
satisfy tion of Eq. (3). On the{v=0} plane, the parabolicyw-nulicline
crosses the cubic-nulicline at two critical points: (0,0,0) and
u'=v, (u(p),ow(p)).
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FIG. 5. The continuous spectrum of either the front or back 0 200 400 600 800 0 500 1000 1500
wave solutions fore=0.05, p=4.114, c=0.48, anda=0.15, is
shown. a((0,0)) consists of the striped region; and the shaded
region  corresponds  to o ((u*,w*)). Notice  that FIG. 6. For fixede, the quiescent states of the pulse solutions
o.((0,0)Co.((u*,w*)); and thato.((u*,w*)) extends into the lengthen agp decreases. Ag decreases, the pulses experience a
(unstabl¢ right-half plane. larger disparity between their slow and fast phases, in addition to

lengthening latent states.

=p*(e), a heteroclinic loop fof4) exists instead. The param-

eter pair(e,p* (€)), where the bifurcation from a homoclinic stable continuous spectrufsince the rest state (0,0) is the
orbit to a heteroclinic loop occurs, is called’goint[17]. A only asymptotic state of the puls&hus we need only check
T-point bifurcation has been experimentally observed in dor eigenvalues in order to fully determine the stability of the
simple electrical circuif18]. pulse solution.

We are first interested in the stability of the twgener- Finding the eigenvalues of the pulse solution of Eg).
alized kinks of Eq.(3). Using the argument if6], we can for 0<e<1 andp>p*(e€) again follows the same argument
show that neither kink solution has an eigenvalue in the unas for the stability of the pulse solution of the original
stable, right-half plane when<Qe<1. If either of the kinks ~ FitzHugh-Nagumo equations if6]. The argument entails
had an unstable bound state, then the composite pulse soledlculating the spectrum of each of the reduced systems
tion would also have an unstable eigenvalii@]. Since the for e=0 [these are the same systems for Ed$.and (3)];
kinks have no unstable eigenvalues, the pulse is not autglemonstrating that the eigenvalues for the full system, when
matically unstable. 0<e<1, are nearby the eigenvalues of the reduced systems;

The continuous spectrum of a solution is associated witfand calculating that the right-most eigenvalue is a simple
the far field steady states of that solution. If either of theeigenvalue at the origin. In this manner, the ultra-refractory
asymptotic states of a wave is unstable, the wave itself sufFitzHugh-Nagumo system is shown to geneistible pulse
fers a radiation instability. Evar[20] showed that in some solutions(with varying refractory lengthsfor any smalle
circumstances, the continuous spectrum can be located ®nd p>p*(e); though at the T-pointge,p* (¢€)), the solu-
calculating the eigenvalues of the corresponding critications of (3) have instead been shown to be two radiationally
points in the traveling wave phase space. In particular, sincgnstablekink solutions.
the critical point (*,0w*) vyields two eigenvalues with To verify numerically that the pulses are able to maintain
negative real parts and one eigenvalue with positive real patheir stability for all p>p*(e), we implement a Crank-
(when ¢c>0), the continuous spectrum ofi{,w*) is un-  Nicholson difference scheme with the modification that
stable. Since both kinks haves{,w*) as an asymptotic the nonlinear terms are evaluated using linearly extrapolated
state, both kink solutions are radiationalipstable This is ~ values of the solution at the two previous time stéps]:
consistent with the fact that kinks are not observed in neulj,,=(1+ o)Ul—oUI"1 wherec=0.45. This three-level
ronal systems. scheme(in time) is conditionally stable. Since we are not

We next calculate the continuous spectrum emitted froninterested in how the solutions change with varyaave fix
the steady state (0,0). By numerically calculating the dispera=0.15. Either periodic or Neumann boundary conditions
sion relation of(3) evaluated at (0,0), we find that the con- yield the same result&@s long as the pulses are kept away
tinuous spectrum of (0,0) is bounded in tistable left half-  from the boundarigs
plane, for any smalk>0. See Fig. 5. This fact does not  The general procedure used for generating pulse solutions
affect the stability of the kinks, because they have alreadpf Eq. (3) for fixed e=[0.01,0.] and p>p*(e) is as
been shown to possess an unstable continuous spectrufnllows: We first use the stable pulse solution generated by
However, it does show that the pulse solution has no unkEg. (3) for p=p;>p*(€) as an initial condition for solving
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the system fop=p,<p;. We continue in this manner, each  The widening quiescent states of the pulses translate to
time using the solution fop=p,,_;, as an initial condition longer refractory periods of the action potentials. This, in
to solve Eq(3) for p=p,<p,-1. Asp decreases, the critical turn, decreases the maximal frequency in wave trains gener-
point (U(p),0w(p)) approaches, (e,p). The effect of the ated by a neuron. The ultra-refractory FitzHugh-Nagumo
approaching equilibrium point on the pulse solutions ofsystem(3) also appears to be an excellent coincidence detec-
Eq. (3) is shown in Fig. 6. The quiescent stdteetween the tor [22]. Because of the shape of the inhibitory nulicline, a
inactivation and recovery phases of the action poténtialneuron modeled by3) would be much more sensitive to
elongates dramatically ap decreases. Because for eachinput timing.
(e,p), the pulsesu(£),w(é)) have a small domain of attrac-  In conclusion, we have both analytically and numerically
tion (in function spack and they change drastically @  demonstrated that the pulse solutions of the ultra-refractory
monotonically decreases {0 (¢) [i.e., p,lp*(e€)], the way  FitzHugh-Nagumo system, with widening quiescent phases,
to continue generating stable pulse solutions for smallego not lose their stability as they approach their limit: two
p-values is to choose{p,} so that [p,—p,-1/l0 as radiationally unstable kink solutions. The system accounts
PnlP*(€). for variable refractory periods in neurons, and therefore pro-
Figure 6 also shows that the lengths of the latent states Qfiges a mechanism for controlling the precision and maximal
the pulse solutions depend @n As e decreases, the system fequency of wave trains. Furthermore, we believe that this is

becomes increasingly singular; the disparity between the jmnortant result for traveling wave solutions in any physi-

solitary wave’s slow and fast phases becomes more Pr%al context: Though a traveling pulse solution is formed

noutnce}d. BE_ecau’?e Te cct>nt|3uc_)uts fﬁec.trﬁ?]holff thle cofnst y concatenating two radiationallynstablekinks (of the
vector function a™w) ex ends into the ngnt hafl-piane for ., o, speed and directigprthe resulting pulsenay still be
a distance of0(e) from the imaginary axis, we only con-

. . . e s stable
sider a pulse to be stable in computations, if it propagates
unchanged for times aP(1/e). Thus any instability associ- The authors thank D. J. Pinto and V. Zharnitsky for help-
ated with the quiescent phase would have sufficient time tdul discussions. The second author was supported by the Na-

manifest itself. tional Science Foundation under Grant No. DMS-9704906.
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