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Stability of neuronal pulses composed of concatenated unstable kinks
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We demonstrate that a traveling pulse solution, emerging from the concatenation of two unstable kinks,can
be stable. By means of stability analysis and numerical simulations, we show the stability of neuronal pulses
~action potentials! with increasing refractory periods, which decompose into two~radiationally! unstable kinks
in the limit. These action potentials are solutions of an ultrarefractory version of the FitzHugh-Nagumo system.
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Pulses which bifurcate from the concatenation of a fr
kink and a back kink~with the same speed and directio!
arise in a variety of physical systems. A model of CO o
dation on a platinum@Pt~110!# surface yields such solitar
pulses near the onset of spatiotemporal chaos@1#. Sneyd
et al. @2# found that their model of traveling calcium (Ca21)
waves in pancreatic acinar cells is also of this type. A mo
locked laser with a multiple quantum well saturable absor
produces traveling flat-top pulses formed by linking toget
a front and back@3#. In a neuronal system, an action potent
~or electrical pulse! held in a refractory, quiescent phase c
be viewed as a conjoining of a generalized front~including
the activation, excited and inactivation phases of the ac
potential! and a generalized back~consisting only of the fi-
nal, recovery phase!.

Since it is believed that neuronal systems communic
through action potentials, numerous studies have been
ducted to analyze and ‘‘decode’’ neuronal signals@4#. In
particular, Berry and Meister@5# experimentally and analyti
cally found that extended, neuronal refractory periods ma
fact enhance neural precision. Herein, we consider a m
which effectively captures the dynamics of a neuronal s
tem having a long and variable refractory period. The ult
refractory FitzHugh-Nagumo system exhibits an action
tential with a long ~refractory! quiescent phase. If the
refractory latent phase is prolonged indefinitely, the act
potential with a widening quiescent phase will decompose
the limit into two ~generalized! kinks, as shown in Fig. 1.

The issue of interest is thestability of these pulse solu
tions with elongating intermediary~quiescent! states,in re-
lation to the stability of their limiting behavior: two coexist
ing kinks. It is known that pulse solutions bifurcating fro
two stablekinks may be either stable or unstable~depending
on the first derivative of the Evans’ function! @6#. A more
intriguing question of recent interest is: Will the concaten
tion of two unstablekinks necessarilyproduce anunstable
pulse? Nii@7#, and Sandstede and Scheel@8# independently
showed a case where such pulses experience a particu
severe instability. A cascade of unstable bound states a
mulates, as the latent state between the front and back
creases. On the other hand, Zimmermanet al. @1# obtained
numerical results suggesting that the pulses may be st
even though the kinks are unstable.

In this article, we show that the seemingly paradoxi
scenario of astable pulse bifurcating from twounstable
kinks can, and indeed does, occur. By studying the ul
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refractory FitzHugh-Nagumo system, we show that a sta
pulse emerges from linking together two kinks with unsta
continuous spectrum. Independently, Sandstede and Sc
@8# analytically showed, in this setting, the possibility of n
unstable eigenvalues being created.

Before analyzing the stability of the solutions of the ultr
refractory FitzHugh-Nagumo system, we first briefly discu
the known dynamics of the FitzHugh-Nagumo equatio
which will be relevant in our analysis@9#. The model formu-
lated independently by FitzHugh@10# and Nagumoet al.
@11# qualitatively describes the spatial propagation of an
tion potential along a nerve axon. The system is

ut5uxx1 f ~u!2w,
~1!

wt5e~u2gw!,

where e!1, g!1, and f (u)5u(u2a)(12u), for some
aP(0,0.5). The fast, one-dimensional~1D! excitatory vari-
able u mimics the neuron’s membrane potential. The slo
inhibitory variable w captures the channel gating kinetic
quantitatively described by the Hodgkin-Huxley model@12#.

By introducing the moving framej5x2ct, wherec is
the speed of the wave, the traveling wave solutions of Eq.~1!
satisfy the ordinary differential equations~ODEs!:

u85v,

v852cv2 f ~u!1w, ~2!

w852
e

c
~u2gw!,

where 85d/dj. In the traveling wave phase space given
Eq. ~2!, at a particular speedc, there exists a homoclinic orbi
based at the origin@13#. The homoclinicHp corresponds to
the traveling pulse solution of Eq.~1!. Figure 2~a! shows the

FIG. 1. ~a! An action potential with a prolonged refractory, qu
escent phase can be viewed as a concatenation of~b! a generalized
front and ~c! a generalized back. The rest state is denoted b
dashed line.
©2000 The American Physical Society04-1
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two distinct scales of the system: slow~as Hp passes nea
C5$(u,0,w):w5 f (u)%, along its right then left-hand
branches! and fast ~as the orbit shoots across in th
u-direction, between the left and right-hand branches ofC).
The two scales are equivalently manifested in the fast
slow amplitude changes of the waves in Fig. 2~b!. The action
potentialu(j) has quick activation and inactivation phase
but a slow excited phase and a slow return to rest. Becaus
the singular nature of Eq.~1!, it is possible to show the
existence of a unique homoclinic orbitHp , and to determine
the stability of the pulse solution corresponding toHp @6#.

The ultra-refractory FitzHugh-Nagumo system has
same, fast excitatory behavior as~1!, but with different slow,
inhibitory dynamics:

ut5uxx1 f ~u!2w,
~3!

wt5e@a~w2b!21b2~u2a!#,

wherea50.1, b50.01p, and f (u) is as before. The bifur-
cation parameterp controls the opening of the parabola,
seen in Fig. 3. Such a system might result from the reduc
of a conductance-based neuron model@14# which incorpo-
rates various Ca21 currents@15#, in addition to the sodium
(Na1) and potassium (K1) currents included in the
Hodgkin-Huxley model. The parameterp should modulate
according to the membranous currents considered. The e
of modulatingp is to vary the length of the refractory perio
of the action potential. The longer the relative refracto
phase of a neuron, the harder it is for the neuron to fire ag
the longer the absolute refractory period of a neuron,
more time before a neuron may fire at all@16#.

Settingj5x2ct, the traveling wave solutions of Eq.~3!
satisfy

u85v,

FIG. 2. The 2D traveling pulse solution of the FitzHug
Nagumo equations, for 0,e!1, is depicted twice:~a! As the
homoclinic orbitHp in the 3D traveling wave phase space, whe
the thin solid lines correspond to the nullclines on the$v50% plane.
~b! As functions ofj. The pulse solution has two components:
excitatory~u! and an inhibitory (w). The double arrows in~a! in-
dicate ‘‘fast’’ dynamics, and the single arrows, ‘‘slow.’’
01190
d

,
of

e

n

ct

n;
e

v852cv1w2 f ~u!, ~4!

w852
e

c
@~w20.01p!210.001p2~u20.1!#.

As depicted in Fig. 3, on the$v50% plane, the inhibitory
nullcline crosses the excitatory nullclineC at (0,0,0) and
„û(p),0,ŵ(p)…. As p decreases, the latter critical poin
moves down along the left-hand branch ofC, closer to the
homoclinic orbitHr . See Fig. 4.

Let p* be the value at which

„û~p* !,0,ŵ~p* !…5~u* ,0,w* !

is a point contained on the homoclinic orbit corresponding
the pulse solution of Eq.~3!. Since (u* ,0,w* ) is a critical
point, the homoclinic orbitHr is now actually a heteroclinic
loop ~or cycle!. One heteroclinic orbit@from (0,0,0) to
(u* ,0,w* )# corresponds to a generalized front solution
Eq. ~3!, while the other, ‘‘shorter’’ heteroclinic orbit@from
(u* ,0,w* ) back to (0,0,0)# corresponds to a slow, genera
ized back solution. For any smalle, there exists a bifurcation
value p* (e). When p.p* (e), ~4! has a homoclinic orbit
corresponding to an action potential of~3!; but when p

FIG. 3. The vertex of each parabola is located atu5a50.1 and
w5b50.01p. The critical points occur whenever the quadra
nullclines ~for varying values ofp) cross the cubic nullclineC.

FIG. 4. The homoclinic orbitHr corresponds to the pulse solu
tion of Eq. ~3!. On the $v50% plane, the parabolic,w-nullcline
crosses the cubicu-nullcline at two critical points: (0,0,0) and

„û(p),0,ŵ(p)….
4-2
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STABILITY OF NEURONAL PULSES COMPOSED OF . . . PHYSICAL REVIEW E 63 011904
5p* (e), a heteroclinic loop for~4! exists instead. The param
eter pair„e,p* (e)…, where the bifurcation from a homoclini
orbit to a heteroclinic loop occurs, is called aT-point @17#. A
T-point bifurcation has been experimentally observed in
simple electrical circuit@18#.

We are first interested in the stability of the two~gener-
alized! kinks of Eq. ~3!. Using the argument in@6#, we can
show that neither kink solution has an eigenvalue in the
stable, right-half plane when 0,e!1. If either of the kinks
had an unstable bound state, then the composite pulse
tion would also have an unstable eigenvalue@19#. Since the
kinks have no unstable eigenvalues, the pulse is not a
matically unstable.

The continuous spectrum of a solution is associated w
the far field steady states of that solution. If either of t
asymptotic states of a wave is unstable, the wave itself
fers a radiation instability. Evans@20# showed that in some
circumstances, the continuous spectrum can be locate
calculating the eigenvalues of the corresponding criti
points in the traveling wave phase space. In particular, s
the critical point (u* ,0,w* ) yields two eigenvalues with
negative real parts and one eigenvalue with positive real
~when c.0), the continuous spectrum of (u* ,w* ) is un-
stable. Since both kinks have (u* ,w* ) as an asymptotic
state, both kink solutions are radiationallyunstable. This is
consistent with the fact that kinks are not observed in n
ronal systems.

We next calculate the continuous spectrum emitted fr
the steady state (0,0). By numerically calculating the disp
sion relation of~3! evaluated at (0,0), we find that the co
tinuous spectrum of (0,0) is bounded in the~stable! left half-
plane, for any smalle.0. See Fig. 5. This fact does no
affect the stability of the kinks, because they have alre
been shown to possess an unstable continuous spec
However, it does show that the pulse solution has no

FIG. 5. The continuous spectrum of either the front or ba
wave solutions fore50.05, p54.114, c50.48, anda50.15, is
shown. sc„(0,0)… consists of the striped region; and the shad
region corresponds to sc„(u* ,w* )…. Notice that
sc„(0,0)…,sc„(u* ,w* )…; and thatsc„(u* ,w* )… extends into the
~unstable! right-half plane.
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stable continuous spectrum@since the rest state (0,0) is th
only asymptotic state of the pulse#. Thus we need only check
for eigenvalues in order to fully determine the stability of t
pulse solution.

Finding the eigenvalues of the pulse solution of Eq.~3!
for 0,e!1 andp.p* (e) again follows the same argumen
as for the stability of the pulse solution of the origin
FitzHugh-Nagumo equations in@6#. The argument entails
calculating the spectrum of each of the reduced syste
for e50 @these are the same systems for Eqs.~1! and ~3!#;
demonstrating that the eigenvalues for the full system, w
0,e!1, are nearby the eigenvalues of the reduced syste
and calculating that the right-most eigenvalue is a sim
eigenvalue at the origin. In this manner, the ultra-refract
FitzHugh-Nagumo system is shown to generatestablepulse
solutions~with varying refractory lengths! for any smalle
and p.p* (e); though at the T-points„e,p* (e)…, the solu-
tions of ~3! have instead been shown to be two radiationa
unstablekink solutions.

To verify numerically that the pulses are able to mainta
their stability for all p.p* (e), we implement a Crank-
Nicholson difference scheme with the modification th
the nonlinear terms are evaluated using linearly extrapola
values of the solution at the two previous time steps@21#:
Uxtp

j 5(11s)U j2sU j 21, wheres50.45. This three-level
scheme~in time! is conditionally stable. Since we are no
interested in how the solutions change with varyinga, we fix
a50.15. Either periodic or Neumann boundary conditio
yield the same results~as long as the pulses are kept aw
from the boundaries!.

The general procedure used for generating pulse solut
of Eq. ~3! for fixed eP@0.01,0.1# and p.p* (e) is as
follows: We first use the stable pulse solution generated
Eq. ~3! for p5p1@p* (e) as an initial condition for solving

k

d
FIG. 6. For fixede, the quiescent states of the pulse solutio

lengthen asp decreases. Ase decreases, the pulses experience
larger disparity between their slow and fast phases, in addition
lengthening latent states.
4-3
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the system forp5p2,p1. We continue in this manner, eac
time using the solution forp5pn21, as an initial condition
to solve Eq.~3! for p5pn,pn21. As p decreases, the critica
point „û(p),0,ŵ(p)… approachesHr(e,p). The effect of the
approaching equilibrium point on the pulse solutions
Eq. ~3! is shown in Fig. 6. The quiescent state~between the
inactivation and recovery phases of the action potent!
elongates dramatically asp decreases. Because for ea
(e,p), the pulses„u(j),w(j)… have a small domain of attrac
tion ~in function space!, and they change drastically aspn
monotonically decreases top* (e) @i.e., pn↓p* (e)#, the way
to continue generating stable pulse solutions for sma
p-values is to choose$pn% so that upn2pn21u↓0 as
pn↓p* (e).

Figure 6 also shows that the lengths of the latent state
the pulse solutions depend one. As e decreases, the syste
becomes increasingly singular; the disparity between
solitary wave’s slow and fast phases becomes more
nounced. Because the continuous spectrum of the con
vector function (u* ,w* ) extends into the right half-plane fo
a distance ofO(e) from the imaginary axis, we only con
sider a pulse to be stable in computations, if it propaga
unchanged for times ofO(1/e). Thus any instability associ
ated with the quiescent phase would have sufficient time
manifest itself.
em
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The widening quiescent states of the pulses translat
longer refractory periods of the action potentials. This,
turn, decreases the maximal frequency in wave trains ge
ated by a neuron. The ultra-refractory FitzHugh-Nagum
system~3! also appears to be an excellent coincidence de
tor @22#. Because of the shape of the inhibitory nullcline,
neuron modeled by~3! would be much more sensitive t
input timing.

In conclusion, we have both analytically and numerica
demonstrated that the pulse solutions of the ultra-refrac
FitzHugh-Nagumo system, with widening quiescent phas
do not lose their stability as they approach their limit: tw
radiationally unstable kink solutions. The system accou
for variable refractory periods in neurons, and therefore p
vides a mechanism for controlling the precision and maxim
frequency of wave trains. Furthermore, we believe that thi
an important result for traveling wave solutions in any phy
cal context: Though a traveling pulse solution is form
by concatenating two radiationallyunstablekinks ~of the
same speed and direction!, the resulting pulsemay still be
stable.
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Neuron20, 553 ~1998!.

@16# D. Johnston and S. M. Wu,Foundations of Cellular Neuro-
physiology~MIT, Cambridge, 1997!.

@17# P. Glendinning and C. Sparrow, J. Stat. Phys.43, 479 ~1986!;
K. Alfsen and J. Fro”yland, Phys. Scr.32, 15 ~1985!.

@18# R. Tokunaga, A. Yasushi, and T. Matsumoto, Chaos3, 63
~1993!.

@19# J. Alexander, R. Gardner, and C. K. R. T. Jones, J. Re
Angew. Math.410, 167 ~1990!.

@20# J. W. Evans, Indiana Univ. Math. J.22, 75 ~1972!.
@21# R. Miura, J. Math. Biol.13, 247~1982!; M. Lees, inNonlinear

Partial Differential Equations, edited by W. Ames~Academic,
New York, 1967!.

@22# B. L. Sabatini and W. G. Regehr, Annu. Rev. Physiol.61, 521
~1999!; D. J. Pinto, J. C. Brumberg, and D. J. Simons, J. Ne
rophysiol.83, 1158~2000!.
4-4


